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Motivation:

B 0000000
® Characteristics of renewable sources (wind, solar):

» Intermittency
» High volatility

Wind Power from the Chosen Farm - July 2013
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Motivation: Wind Farm Paired with Storage Device
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Motivation: Wind Farm Paired with Storage Device
B 0000000

® Goal: Operate the system at minimum cost while
satisfying the load at all times

@ First Step: Modeling the stochastic processes
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Error Distribution

Wind Power Prediction Error Density

=

Empirical error distribution’O

0000 0001 0002 0003 0004 0.005

-400 -200 0 200 400 600

Error from Forecast (MW)

Wind Power from the Chosen Farm - July 2013
. Forocast Forecast Error
O O Q

Actual
Output

Positive
Error

MW
"

Negative
Error

A RASRERESHNANSNEEEERNANARASNAANSHHSSSEEEGUSCFCGLYESANARESEAECEESTEFEEEENRASAELEREESE

Slide 8



Possible Error Model: 11D Errors

@ O distributed according to emplrlcal error

distribution™O
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Policy based on IID Error Model

Sample Path versus Forceast
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Policy based on IID Error Model

Sample Path versus Forceast
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Power (MW)

Policy based on IID Error Model
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What can happen In practice:

Wind Farm Observed vs Actual Ouptut
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"Oid G,
with LMP 0

Time period A:
According to policy
the battery is nearly
fully discharged to
maximize profit
during this period
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What can happen In practice:

Wind Farm Observed vs Actual Ouptut
———
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Time period B:
Less wind than
expected for an
extended period of
time, unable to fully
recharge
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(M)

What can happen In practice:

Wind Farg™oreey

fved vs Actual Ouptut
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Time Period C:
Battery drains
completely, not much
wind. Must buy from
grid, no matter how
high the LMP, to

—

satisfy the load.
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A More Robust Policy:

Wind Farm Observed vs Actual Ouptut
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Time period A:
Maximize profits by
selling during high
LMP periods, but
do not completely
drain the battery
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owver (MIWY)

A More Robust Policy:

Wind Farm Observed vs Actual Ouptut
PN
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A More Robust Policy:
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Time Period C:

Still enough energy |
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an option, not a mus

| gumn ol




What went wrong?

B 0000000
® The distribution of crossing timéscontiguous
blocks of time for which wind is above or below
Its forecast were poorly replicated by the IID
modeul. e

® Up-crossings: -

Wind Power from the Chosen Farm

Consecutive 10 minute Time Periods Above Forecast

<— Time actual is 1

above forecast
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What went wrong?

B 0000000
® The distribution of crossing timéscontiguous
blocks of time for which wind is above or below
Its forecast were poorly replicated by the IID
model. B

@ Down-crossings:

Wind Power from the Chosen Farm
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<— Time actual is 1
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What went wrong?

B 0000000
® The distribution of crossing timéscontiguous
blocks of time for which wind is above or below
Its forecast were poorly replicated by the IID
model.

Above CDF - IID Errors F028 Below CDF - IID Errors F028
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What went wrong?

@ Other common error models that do not replicate crossing
time distributions well:

» ARIMA
» ARIMA -GARCH

Down-Crossing Time Distibution Up-Crossing Time Distibution
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® HiddenSemtMarkov Crossing Statislodel
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Solution: Crossing State Models

® Incorporates a hidden state variable,dhmssing
state to control the crossing times of the process,
forming a hidden serVlarkov model (HSMM).

® This state variable determines whether the process
above or below its forecast and for how long.
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Univariate Crossing State Model

@ Hidden Markov Model vs Hidden SesiWlarkov Model:
» HMM:

5(Y [Y) DY Y)Y V) BCY 1Y)

Time Invariant
Transition Matrix
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Univariate Crossing State Model

@ Hidden Markov Model vs Hidden SesiWlarkov Model:
» HSMM:
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Univariate Crossing State Model

@ Hidden Markov Model vs Hidden SesiWlarkov Model:
» HSMM:
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State duration-dependent transition matrix
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Univariate Crossing State Model

@ Hidden Markov Model vs Hidden SesiWlarkov Model:
» HSMM:
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Univariate Crossing State Model

@ 'Y k (UD, SIM/L): the crossing state
» Observable: U/D: Upor Down Crossing
» Hidden: S/M/L: Short, Medium, or Long Crossing Time

Upcrossing CDF Downcrossing CDF
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@ For each crossing statethere exists a distribution of crossing
times™O. These also serve as the sojourn time distributions
the crossing states.
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Univariate Crossing State Model
B 0000000

@ Error generation is conditioned on the crossing state as well

® O  Aggregated Forecast Error

» Aggregated intd bins for each crossing state
» Partitions are based on error quantiles given the crossing state
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Slide 30



0.8 1.0

0.6

0.4

0.2

Resulting Distributions:
B 0000000
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® Formulating the Energy Storage Problem as a
Markov Decision Process
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Goals:

@ Create a very realistic energy storage problem by
using crossing state models for the stochastics
Involved

@ Develop near optimal control policies using
backward approximate dynamic programming
(ADP)
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Back tothe Energystorage Problem

Wind speed
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Formulating theenergyStorage Problem as a

Markov Decision Process Feasible Decision —
e [ ransition Probability = >
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Formulating theenergyStorage Problem as a

Markov Decision Process Feasible Decision —
e [ ransition Probability = >

Postdecision state:
o’ Y P Yo
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